
Tetrahedron Letters,Vol.24,No.l,PP 83-86, 1983 0040-4039/83/010083-04$03.@o/o 
Printed in Great Britain 01983 Pergamon Press Ltd. 

TOTAL SYNTHESIS OF (+)-SILPHINENE 

Tstsuto Tsunoda, Mitsuaki Kodama and ShB Ita 

Department of Chemistry, Tohoku University 

Sendai 980, Japan 

Abstract The regio- and stereoselective total synthesis of (+)-silphinene, an angular tricyclopentanoid 

sesquiterpene, was achieved starting from dicyclopentadiene. 

Recently sesquiterpenes having a carbon skeleton of three angularly-fused cyclopentanes have attracted 

much attention of synthetic chemists because of their unique structures and successful syntheses of two 

members, isocomene (1)‘) and pentalenene (2) 
2) 

, have been reported. Silphinene (j)3) first isolated by 

Bohlmann from Silphium perfoliatum belongs to this group, but has different substitution pattern from L and 

2, which necessitates completely different synthetic strategy from those for these compounds. We wish to 

describe herein a regio- and stereoselective total synthesis of silphinene, starting from readily available 

4) 
dicyclopentadiene and following the synthetic strategy shown below . 

The acetal 5 prepared from the known ketone 5 
5) 

was converted to the hydroxy-acetal6_ in three steps 

(73% yield) and then to the acetal-ester ,7 (76%)6). The methylation of z to 5 (86%) and subsequent 

conversion of the ester group to methyl group (72%) afforded the tricyclic acetal 2. Although the acetal 2 

failed to give the corresponding keto-alcohol as itself or as its protected forms, it was conveniently converted 

to the iodo-ketone 9 by trimethylsilyl iodide 7) in 99% yield. The reaction of 9 with 1,8-diazabicyclo- 
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C5.4.01-7-undecene (DBU) in ether at room temperature resulted in the formation of the enone 2 in 87% 

yield along with the tricyclic ketone l2_ (12%)8). 

& 2 2 

a: HOCH2CH20H, p-TsOH; b: Na104, cat. OsO,, NaHC03; c: NaBH4; 

d: MeOH, HCl; e: Jones oxid. f: CH2N2; g: LDA; h: Mel; i: LAH; 

i: PCC; k: N2H4, KOH; I: Me3SiCl, NaI/CH3CN; m: DBU 

+ 
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With the synthesis of the key intermediate c achieved, the 3rd 5-membered ring was constructed as 

follows. Conjugate addition of Grignard reagent prepared from P-bromopropionaldehyde ethylene acetal to 

g occurred smoothly in the presence of Cul and afforded the keto-acetal g (70%). Deprotection and 

cycl ization of the resulted keto-aldehyde was accomplished by acid in one step to yield the aldol 3 
9) 

(98%), and subsequent dehydration offorded the unsaturated ketone g (81% yield). 

Because direct replacement of the oxygen function in 5 by methyl group, that is, the reaction of 

LiCuMe2 on tosylate of the corresponding alcohol, gave the diene s as the major product, the methyl 

group had to be introduced indirectly. Thus methylation of M with methyllithium TO) afforded the methyl 

carbinol 2 and its dehydration and subsequent epoxidation gave 8-epoxide 5 exclusively. The control led 

isomerization of 5 with BF3 etherate (0°C) yielded the methyl-ketone E (33% overall yield from lS). 

Huang-Minlon reduction of 2 afforded the hydrocarbon 3_after silica-gel column chromatography. IR and 

PMR spectra of 3_ were identical with those of the natural silphinene. 

Acknowledgement We thank Professor P. Teresa for a sample of silphinene and its spectra. 
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n: BrMgCH2CH2CH,GCH2 -OCH2 , Cul; o: HCI/THF-H20; p: POCl3, Py; 

q: MeLi; r: SOCf2, Py; s: mCPBA; t: BF3=OEt2; U: N2H4, KOH 
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